通用事件边界检测(GEBD)是一个新建议的视频了解任务,旨在找到事件的一个级别更深入的语义边界。桥接自然人感知和视频理解之间的差距,它具有各种潜在的应用,包括可解释和语义有效的视频解析。仍处于早期发展阶段,现有的Gebd求解器是相关视频理解任务的简单扩展,无视Gebd的独特特征。在本文中,我们向无监督/监督Gebd提出了一种新颖的框架,通过使用时间自相似性矩阵(TSM)作为视频表示。新的递归TSM解析(RTP)算法利用TSM中的本地对角线模式来检测边界,与边界对比(BOCO)丢失相结合,以培训我们的编码器以产生更多的信息性TSM。我们的框架可以应用于无监督和监督的设置,通过Gebd基准的巨大边缘实现最先进的性能。特别是,我们无监督的方法优于以前的最先进的“监督”模型,这意味着它的卓越效果。
translated by 谷歌翻译
We study model-based reinforcement learning (RL) for episodic Markov decision processes (MDP) whose transition probability is parametrized by an unknown transition core with features of state and action. Despite much recent progress in analyzing algorithms in the linear MDP setting, the understanding of more general transition models is very restrictive. In this paper, we establish a provably efficient RL algorithm for the MDP whose state transition is given by a multinomial logistic model. To balance the exploration-exploitation trade-off, we propose an upper confidence bound-based algorithm. We show that our proposed algorithm achieves $\tilde{\mathcal{O}}(d \sqrt{H^3 T})$ regret bound where $d$ is the dimension of the transition core, $H$ is the horizon, and $T$ is the total number of steps. To the best of our knowledge, this is the first model-based RL algorithm with multinomial logistic function approximation with provable guarantees. We also comprehensively evaluate our proposed algorithm numerically and show that it consistently outperforms the existing methods, hence achieving both provable efficiency and practical superior performance.
translated by 谷歌翻译
我们提出了一个深层神经网络,用于从不受约束的肖像图像中删除不良阴影特征,从而恢复基础纹理。我们的培训计划纳入了三种正则化策略:蒙面损失,以强调高频阴影特征;软阴影损失,改善了对照明微妙变化的敏感性;和阴影偏移估计,以监督阴影和纹理的分离。与最先进的方法相比,我们的方法表明了质量和概括的改善。我们进一步展示了我们的愉悦方法如何增强光敏的计算机视觉任务任务(例如面部重新放置和语义解析)的性能,从而使它们能够处理极端的照明条件。
translated by 谷歌翻译
钢筋学习最近在许多组合优化问题中显示了学习质量解决方案的承诺。特别地,基于注意的编码器 - 解码器模型在各种路由问题上显示出高效率,包括旅行推销员问题(TSP)。不幸的是,它们对具有无人机(TSP-D)的TSP表现不佳,需要在协调中路由车辆的异构队列 - 卡车和无人机。在TSP-D中,这两个车辆正在串联移动,并且可能需要在用于其他车辆的节点上等待加入。不那么关注的基于关注的解码器无法在车辆之间进行这种协调。我们提出了一种注意力编码器-LSTM解码器混合模型,其中解码器的隐藏状态可以代表所做的动作序列。我们经验证明,这种混合模型可提高基于纯粹的关注的模型,用于解决方案质量和计算效率。我们对MIN-MAX电容车辆路由问题(MMCVRP)的实验还确认混合模型更适合于多车辆的协调路由而不是基于注意的模型。
translated by 谷歌翻译
由于机器学习(ML)技术和应用正在迅速改变许多计算领域,以及与ML相关的安全问题也在出现。在系统安全领域中,已经进行了许多努力,以确保ML模型和数据机密性。ML计算通常不可避免地在不受信任的环境中执行,并因此需要复杂的多方安全要求。因此,研究人员利用可信任的执行环境(TEES)来构建机密ML计算系统。本文通过在不受信任的环境中分类攻击向量和缓解攻击载体和缓解来进行系统和全面的调查,分析多方ML安全要求,并讨论相关工程挑战。
translated by 谷歌翻译
The 3D-aware image synthesis focuses on conserving spatial consistency besides generating high-resolution images with fine details. Recently, Neural Radiance Field (NeRF) has been introduced for synthesizing novel views with low computational cost and superior performance. While several works investigate a generative NeRF and show remarkable achievement, they cannot handle conditional and continuous feature manipulation in the generation procedure. In this work, we introduce a novel model, called Class-Continuous Conditional Generative NeRF ($\text{C}^{3}$G-NeRF), which can synthesize conditionally manipulated photorealistic 3D-consistent images by projecting conditional features to the generator and the discriminator. The proposed $\text{C}^{3}$G-NeRF is evaluated with three image datasets, AFHQ, CelebA, and Cars. As a result, our model shows strong 3D-consistency with fine details and smooth interpolation in conditional feature manipulation. For instance, $\text{C}^{3}$G-NeRF exhibits a Fr\'echet Inception Distance (FID) of 7.64 in 3D-aware face image synthesis with a $\text{128}^{2}$ resolution. Additionally, we provide FIDs of generated 3D-aware images of each class of the datasets as it is possible to synthesize class-conditional images with $\text{C}^{3}$G-NeRF.
translated by 谷歌翻译
In both terrestrial and marine ecology, physical tagging is a frequently used method to study population dynamics and behavior. However, such tagging techniques are increasingly being replaced by individual re-identification using image analysis. This paper introduces a contrastive learning-based model for identifying individuals. The model uses the first parts of the Inception v3 network, supported by a projection head, and we use contrastive learning to find similar or dissimilar image pairs from a collection of uniform photographs. We apply this technique for corkwing wrasse, Symphodus melops, an ecologically and commercially important fish species. Photos are taken during repeated catches of the same individuals from a wild population, where the intervals between individual sightings might range from a few days to several years. Our model achieves a one-shot accuracy of 0.35, a 5-shot accuracy of 0.56, and a 100-shot accuracy of 0.88, on our dataset.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
The purpose of this work was to tackle practical issues which arise when using a tendon-driven robotic manipulator with a long, passive, flexible proximal section in medical applications. A separable robot which overcomes difficulties in actuation and sterilization is introduced, in which the body containing the electronics is reusable and the remainder is disposable. A control input which resolves the redundancy in the kinematics and a physical interpretation of this redundancy are provided. The effect of a static change in the proximal section angle on bending angle error was explored under four testing conditions for a sinusoidal input. Bending angle error increased for increasing proximal section angle for all testing conditions with an average error reduction of 41.48% for retension, 4.28% for hysteresis, and 52.35% for re-tension + hysteresis compensation relative to the baseline case. Two major sources of error in tracking the bending angle were identified: time delay from hysteresis and DC offset from the proximal section angle. Examination of these error sources revealed that the simple hysteresis compensation was most effective for removing time delay and re-tension compensation for removing DC offset, which was the primary source of increasing error. The re-tension compensation was also tested for dynamic changes in the proximal section and reduced error in the final configuration of the tip by 89.14% relative to the baseline case.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译